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Abstract

It is well known that volume of fluid (VOF) methods in three-dimensions, especially those based on unsplit advection
schemes, involve highly complex geometrical operations. The objective of this work is to propose, for general grids and
three-dimensional Cartesian geometry, simple and efficient geometrical tools for volume truncation operations that typi-
cally arise in VOF methods and an analytical method for local volume enforcement. The results obtained for different tests
and grid types show that the proposed analytical method may be as much as three times faster than Brent’s iterative
method. Advection tests were carried out using hexahedral grids obtained from deformation of a cubic grid to assess
the accuracy of the proposed tools in combination with a recently proposed unsplit PLIC–VOF method.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

One of the most widely used methods for simulating interfacial flows is the volume of fluid (VOF) method.
Algebraic formulations in VOF methods are being replaced by purely geometrical procedures with PLIC
(piecewise linear interface calculation) reconstruction of the interface, which provide second-order accuracy.
Numerous successful implementations of high-order PLIC–VOF methods have been developed in two dimen-
sions (2D) during the last two decades (see for example the reviews of Scardovelli and Zaleski [14] or Rider
and Kothe [13] and the references therein). However, the great complexity of the geometrical operations
involved in these methods makes their extension to three dimensions (3D) relatively difficult (successful imple-
mentations of high-order PLIC–VOF methods in 3D can be found in [2,4,5,8–10,12]).

Two basic operations are involved in any geometrical PLIC–VOF method: volume truncation and the
enforcement of local volume conservation. The first typically arises in the computation of the fluid volume
advected through cell boundaries, a volume obtained from the intersection between the reconstructed interface
0021-9991/$ - see front matter � 2008 Elsevier Inc. All rights reserved.
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and the donating flux regions constructed at cell boundaries. In spatially varying velocity fields, the use of
unsplit advection schemes gives rise to discretized flux regions that are generally irregular convex polyhedra
(polygons in 2D), thus introducing additional complexity.

The second operation consists of determining the position of a planar interface (with a given orientation)
that produces a truncated polyhedron of a given volume. This problem is usually encountered as part of the
interface reconstruction step, in which local volume conservation is enforced in each interfacial cell of the com-
putational domain. The solution to this problem may also be useful in the advection step, to ensure that the
volume of the flux region constructed at a given cell boundary satisfies the local conservation constraint given
by the computed volumetric flux through the cell boundary (see Refs. [4,6,7]). The analytical solution to this
problem eliminates the need to iterate, generally reducing CPU time. Scardovelli and Zaleski [15] and Yang
and James [18] solved this problem analytically for orthogonal hexahedral and tetrahedral grids, respectively.
However, for general grids, or even for orthogonal hexahedral grids when an unsplit advection scheme is used
and the flux regions constructed at cell boundaries are non-orthogonal, a more general analytical method is
needed.

The tools for volume truncation operations and the analytical method to enforce local volume conservation
in general grids are described in Sections 2 and 3, respectively. The proposed analytical method is assessed in
Section 4 by comparing its efficiency with that of an iterative method typically used in PLIC–VOF methods.
The source codes and pseudo-codes for the proposed algorithms are available for download at [19].

2. Polyhedron truncation procedure

In this section, a general procedure for obtaining the truncated polyhedron resulting from the intersection
between a plane P and a generic convex polyhedron X, either regular or irregular, will be described. A rela-
tively similar procedure can be found in the work of Stephenson and Christiansen [17], although few imple-
mentation details are given by these authors. The truncation procedure is carried out in 2D and 3D problems
using two different algorithms, the corresponding codes and pseudo-codes of which are available at [19]. The
output of the algorithms is the set of ordered vertices of the truncated polyhedron or polygon.

Let us consider a polyhedron of J faces, with I j vertices in each face j, and a plane P, defined by
n � xþ C ¼ 0, where n is the unit-length vector normal to P, x is the position vector of a generic point on
P and C is a constant. Fig. 1 shows an example of the arrangement of polyhedron vertices using a global
Fig. 1. Truncation of a polyhedron by a plane P. Symbols � and � denote vertices with positive and negative / values, respectively, and �
denotes the intersection point between plane P and a polyhedron edge.
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vertex index, ip, assigned to every vertex index i of face j (xj;i � xip ). The signed distance, /ip , from every vertex,
xip , of X to P is computed as /ip ¼ n � xip þ C. Note that if the normal vector n points to xip , the sign of /ip will
be positive. Whether or not intersection between X and P exists can be determined by comparing the relative
signs of /ip values. The truncated polyhedron (edges drawn with thicker lines in the example of Fig. 1) will be
defined by the vertices where the signed distance function is positive and by the points of intersection between
P and the edges of X. In the example of Fig. 1, in which one of these edges is defined by the two adjacent
vertices, x2 and x3, the resulting position vector of the intersection point is obtained as x9 ¼
x2 � /2

/3�/2
ðx3 � x2Þ.

In 2D, a new vertex index, corresponding to an intersection point between line P and the polygon consid-
ered, is inserted between every two adjacent polygon vertices with opposite / values. The vertices of the trun-
cated polygon are then arranged in counterclockwise order.

In 3D, the truncation procedure begins by discarding the polyhedron faces in which all the vertices have a
negative / value (face C2 of Fig. 1). Next, the array of the ordered global indices corresponding to the vertices
of the new face, CJþ1, of the truncated polyhedron (face C7 in Fig. 1) is constructed. Finally, the new array of
global vertex indices for every truncated face of the polyhedron (faces C1, C3, C5 and C6 in Fig. 1) is con-
structed following a procedure similar to that indicated above for polygon truncation in 2D problems.

Note that the polygon truncation procedure described above could also be applied to non-convex polygons
with no loss of generality. In 3D, this would require a small modification to allow for more than one new face
in the resulting truncated polyhedron. However, since the present work is focused on the context of VOF
methods, for which all the polyhedra arising during computation are generally convex, the modification of
the algorithm for more general applications will not be presented here. It should be mentioned that the inter-
section between a convex polyhedron and a plane also produces a convex polyhedron, and so subsequent trun-
cation operations will be made over convex polyhedra.

3. Local volume enforcement

The problem consists of determining the constant C of a plane P with a given normal n, which truncates a
polyhedron X, producing a polyhedron, XT , with a given volume, V T . The procedure proposed in this section
consists of bracketing the solution followed by applying an analytical method valid for the truncation of any
convex polyhedron in general grids.

The volume of the polyhedron can be expressed as [16]
V ¼ 1

6

XJ

j¼1

ðnCj � xj;1ÞnCj �
XIj

i¼1

ðxj;i � xj;iþ1Þ
" #

ð1Þ
(subscript iþ 1 must be replaced by 1 for i ¼ I j). Here, nCj is the unit-length vector normal to face Cj (pointing
outwards from the polyhedron) and xj;i is the position vector of the counterclockwise (viewed from outside the
polyhedron) ordered vertex i of face Cj. The constant C will be obtained by imposing the condition V ¼ V T in
Eq. (1). Since the unit-length vector normal to each face of the truncated polyhedron, XT , is chosen to point
outwards from the polyhedron, the plane containing the new face Cc of XT will be given by nCc � xþ CCc ¼ 0,
with nCc ¼ �n and CCc ¼ �C (see the examples of Figs. 2(a) and (b)). The bracketing and analytical steps of
the proposed procedure used to determine the constant CCc are described in the following two sections.

3.1. Bracketing the solution

The vertices of the original polyhedron that will remain in the truncated polyhedron are first determined
using a bracketing procedure. This part of the algorithm may be the most time consuming, especially when
the number of vertices of X is large.

The procedure consists of successively truncating the polyhedron X by the planes parallel to n � x ¼ 0 pass-
ing through its different vertices, and comparing the corresponding truncated volumes with V T , thus determin-
ing whether the distance /ip from each vertex ip to the plane containing Cc is positive (if V ip < V T , where V ip is



a b

Fig. 2. Schematic representation of the procedure used to determine the location of the interface Cc: (a) two-dimensional case; (b) three-
dimensional case.
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the volume truncated by the plane which goes through vertex ip) or negative (if V ip > V T ). To improve the
efficiency of the algorithm, the Ip vertices of X are first ordered from higher to lower distance, /0

ip
¼ n � xip ,

to the plane n � x ¼ 0, parallel to P and passing through the origin, using index k ¼ 1; . . . ; Ip (for example,
in Fig. 2(a), /0

3 > /0
2 > /0

4 > /0
1 > /0

5 > /0
6).

The first truncation plane considered in the bracketing procedure will be that passing through the vertex
corresponding to the central index kc ¼ INT½ðIp þ 1Þ=2� of the ordered sequence of /0

ip
values (vertex index

ip ¼ 4 and kc ¼ 3 in the case of Fig. 2(a), and vertex index ip ¼ 7 and kc ¼ 4 in Fig. 2(b)). Depending on
the value of the resulting truncation volume, V kc , the central index kc is assigned to the bracketing index
kmax if V T < V kc , or to kmin if V T > V kc (in both cases of Figs. 2(a) and (b), kmax ¼ kc), and planes passing
through vertices with the preceding (kmax � 1) or subsequent (kmin þ 1) indices are used, respectively, to obtain
the next truncated volume. Values Ip and 1 will be set as initial guesses for the bracketing indices kmax and kmin,
respectively. The process will finish when the difference between kmax and kmin reaches unity. Obviously, every
vertex, ip, for which V ip < V T (and so the corresponding index k is lower than kmax) will have a positive value of
the distance to Cc, / (black circles in Fig. 2), whereas the rest of vertices will have a negative / value (open
circles in Fig. 2). Note that the solution for CCc being sought is bracketed between the two values
Cmax ¼ /0ðkminÞ and Cmin ¼ /0ðkmaxÞ.

When the number of vertices Ip of the polyhedron to be truncated is large, the above procedure may be
relatively slow. The consumed CPU time, which depends on the value of the volume fraction V T=V X, is, on
average, in the order of Oð1

4
Ip þ 1Þ (note that the time consumed by the simpler procedure of sorting in ascend-

ing or descending order may be as much as double). An alternative procedure, based on selecting the plane
passing through the vertex with index ðkmax þ kminÞ=2 to obtain the next truncated volume, consumes a
CPU time in the order of Oðlog2IpÞ. This choice has been used for Ip > 8 (note that log2Ip becomes lower than
1
4
Ip þ 1 for Ip > 8).

When the number of vertices with a positive distance function to Cc is larger than that of the rest of the
polyhedron vertices, the inverse problem is solved using the algorithm proposed above. This consists of deter-
mining the position of the plane with normal vector �n that truncates X into a polyhedron of volume
V X � V T , which involves a lower number of vertices and so requires a lower computational time.

3.2. Analytical solution

Once the solution to the problem has been bracketed, the next step is to determine the edges of the poly-
hedron X that join vertices located on both sides of the interface. Then, the position vector, xc;i, of every inter-
section point between the interface plane Cc, given by nCc � xþ CCc ¼ 0, and the polyhedron edges can be



J. López, J. Hernández / Journal of Computational Physics 227 (2008) 5939–5948 5943
expressed analytically. Let us denote by xout
c;i and xin

c;i the vertices of the polyhedron edge Li (i ¼ 1; . . . ; Ic, where
Ic is the number of vertices of the new face) passing through point xc;i (in the case of Fig. 2(a), vertices
ip ¼ 1 and 2 and ip ¼ 4 and 3 defining edges L1 and L2, respectively, intersecting Cc at xc;1 and xc;2). For con-
venience, xc;i will be expressed as a function of the constant CCc,
xc;i ¼ x0
c;i þ bc;iCCcec;i; ð2Þ
where bc;i ¼ �1=ðnCc � ec;iÞ, ec;i ¼ ðxout
c;i � xin

c;iÞ=jxout
c;i � xin

c;ij and x0
c;i is the position vector of the intersection point

between edge Li and the plane defined by nCc � x ¼ 0 (parallel to Cc and passing through the origin of the coor-
dinate system), which may be expressed as
x0
c;i ¼ xin

c;i þ bc;iðnCc � xin
c;iÞec;i: ð3Þ
The next step is to order the vertices of the truncated polyhedron (i.e., those of the original polyhedron with
/ > 0 and those of the new face defined by Eq. (2)) using the criterion indicated in Section 2. Then, introduc-
ing Eq. (2) and the position vectors of the rest of the truncated polyhedron vertices into Eq. (1) and imposing
the volume constraint given by V ¼ V T yields an analytical expression for CCc.

3.2.1. 2D problems

In a 2D problem
a2C2
Cc þ a1CCc þ a0 ¼ 2V T ; ð4Þ
where
a2 ¼ �ðn?C2 � nC1Þbc;1bc;2; ð5Þ
a1 ¼ �2ðCC2bc;2 þ CC1bc;1Þ; and ð6Þ

a0 ¼ � nCc � x in
c;1

� �
CC1bc;1 � nCc � xin

c;2

� �
CC2bc;2 þ

X
8ij/i ;/iþ1>0

xi � xiþ1; ð7Þ
where the summation is extended to every pair of adjacent vertices of the truncated polygon, except those
located on Cc. Subscripts 1 and 2 refer to the edges of the original polygon, defined by nC1 � xþ CC1 ¼ 0
and nC2 � xþ CC2 ¼ 0, respectively, intersected by Cc, while xin

c;1 and xin
c;2 are the position vectors of the vertices

of these edges that have a positive / value (vertex indices ip ¼ 2 and 3, respectively, in the case of Fig. 2(a)).
Subscripts 1 and 2 are chosen so that all the vertices of the truncated polygon with positive / values can be
followed in counterclockwise order from xin

c;1 to xin
c;2, so that n?C1 ¼ �ec;1 and n?C2 ¼ ec;2. Note that, when edges

C1 and C2 are parallel, the coefficient a2 is zero and Eq. (4) becomes a linear function of CCc. In the example of
Fig. 2(a), this would occur when V ip¼4 < V T < V ip¼1. Note that, within this range, the length of edge Cc is
constant.

3.2.2. 3D problems
For a 3D case, after a relatively laborious manipulation, the following expression, equivalent to Eq. (4), is

obtained:
a3C3
Cc þ a2C2

Cc þ a1CCc þ a0 ¼ 6V T ; ð8Þ
where
a3 ¼ �MCc � nCc;

a2 ¼ �LCc � nCc �
X

j

MCj � nCj CCj;

a1 ¼ �KCc � nCc �
X

j

LCj � nCj CCj;

a0 ¼ �
X

j

KCj � nCj CCj;
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in which the summations are extended over all the faces of the truncated polyhedron, except face Cc. In the
above expressions, CCj ¼ �nCj � xj;1,
KCj ¼
XIj

i¼1

x0
j;i � x0

j;iþ1;

LCj ¼
XIj

i¼1

ej;i � ðx0
j;iþ1 � x0

j;i�1Þbj;i;

MCj ¼
XIj

i¼1

ðej;i � ej;iþ1Þbj;ibj;iþ1
(subscripts iþ 1 and i� 1 must be replaced by 1 and Ij, respectively, for i ¼ Ij and i ¼ 1). For vertices that are
not placed on face Cc, x0

j;i ¼ xj;i, ej;i ¼ ð0; 0; 0Þ and bj;i ¼ 0.
By introducing Eq. (2) into the expression giving the area of the new face Cc,
Ac ¼
1

2
nCc �

XIc

i¼1

xc;i � xc;iþ1; ð9Þ
where subscript iþ 1 must be replaced by 1 for i ¼ Ic, and, by rearranging terms, Ac can be expressed as a
function of CCc
Ac ¼
1

2
MCc � nCcC

2
Cc þ LCc � nCcCCc þ KCc � nCc

� �
: ð10Þ
Then, combining Eqs. (10) and (8), the following expression is obtained:
�CCc 2Ac þ
X

j

MCj � nCj CCj þ
X

j

LCj � nCj CCj

 !
þ a0 ¼ 6V T :
Note that, when Ac is constant or a linear function of CCc in the bracketed range determined in Section 3.1, Eq.
(8) becomes, respectively, a linear or quadratic function of CCc. Also note that Ac is linear when MCc � nCc ¼ 0
and constant when, additionally, LCc � nCc ¼ 0, which occurs if all ec;i are parallel vectors.

Eqs. (4) and (8) can easily be solved analytically (see, for example, Refs. [1,11,15]). We have found that
explicit formulae for cubic roots generally consume less computational time than Newton–Raphson iterations
(a similar finding was observed in [15], although the relative advantage of both methods may depend on the
computer, compiler and intrinsic function library used). Only in the very few cases in which roundoff errors
may produce unstable analytical solutions are Newton–Raphson iterations used. These cases were found to
occur when the analytical solution is out of the bracketing interval ½Cmin;Cmax�. In the tests presented in Sec-
tion 4, the analytical solution may go out of the bracketing interval in the very few cases in which V T=V X or
1� V T=V X is lower than about 10�6 and the dimensionless size of the bracketing interval (ðCmax � CminÞ=h,
where h is the cell size) is lower than about 0.05. Therefore, the global computational efficiency of the local
volume enforcement procedure is not practically affected by the eventual use of an iterative root finding pro-
cedure (in the 3D shearing flow test of Section 4.1, when the finest and most deformed grid is used, for exam-
ple, this occurs only in a 0.005% of the total cases).

4. Assessment of the proposed analytical method

The computational efficiency and robustness of the proposed analytical method for local volume enforce-
ment in general grids will be assessed by comparing results with those obtained with the iterative method of
Brent, which is extensively used in VOF-type methods. Brent’s method [11] has been implemented in the pres-
ent work following the indications given by Rider and Kothe [13], who used a bracketing procedure different
from that described in Section 3.1. In this procedure, the volumes of the polyhedra truncated by all the planes
parallel to P passing through every vertex of XT are computed, and then the two planes that delimit the actual
material volume V T are determined. The routines were compiled using the GNU g77 compiler and all test
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cases were run on a workstation with dual 2 GHz Intel T7200 processors. A number of 106 and 105 combina-
tions of the volume V T and interface orientation, for 2D and 3D problems, respectively, were randomly
selected and solved for each test.

Table 1 shows the CPU time consumed by the iterative method relative to that consumed by the analytical
method for five grid types and different values of the convergence tolerance in the solution for CCc. The cor-
responding mean volume error and mean number of iterations needed by the iterative method to reach the
required tolerance are also included in the table. Note that the CPU time consumed by the bracketing proce-
dure suggested by Rider and Kothe [13] is in the order of OðIpÞ, which makes the iterative method particularly
time-consuming for high values of Ip. To assess the importance of using an appropriate bracketing procedure
in an iterative method, we have also implemented Brent’s method in combination with the bracketing proce-
dure proposed in Section 3.1. Table 2 shows the CPU time consumed by the iterative method (relative to that
consumed by the analytical method) using the bracketing procedure of Rider and Kothe [13] and that pro-
posed in this work for three different grid types. The convergence tolerance in the solution was set to 10�10.
Note that, although the proposed bracketing procedure reduces by a factor of 2.5 the CPU time consumed
by the iterative method for the case with Ip ¼ 20, Table 2 shows that the iterative method is always more
time-consuming than the analytical method, regardless of the bracketing procedure used.

4.1. Advection tests

In this section, we present results obtained using two types of hexahedral grids, obtained by deformation of
a cubic grid, for two different tests: the rigid-body rotation of a slotted sphere, taken from the work of Enright
et al. [3], and the single-vortex flow problem of Rider and Kothe [13] with a laminar pipe flow in the z direc-
tion. The first grid is a parallelepiped grid, obtained by transforming the location ðx; y; zÞ of each node of a
cubic grid to ðxþ y=n; y; zÞ, where n is a deformation parameter. In the second grid considered, referred to
as sinusoidal grid, the coordinates of the grid nodes are given by ðxþ c=n; y þ c=n; zÞ, where c ¼
sinð2pxÞ sinð2pyÞ. Note that the lower the value of n, the higher the deformation of the grid. Although similar
tests have also been performed in two dimensions, only results for 3D cases will be presented here.

The analytical and geometrical tools described in this work have been combined with the unsplit advection
(FMFPA-3D) method proposed by Hernández et al. [4] and with the PLIC reconstruction (CLC-CBIR)
method proposed by López et al. [8], both of which can be used with deformed hexahedral grids without loss
of generality. The error, E, is estimated with an L1 error norm defined as
Table 1
Mean volume error and CPU time consumed by Brent’s method (relative to that required by the proposed analytical method) for different
grid types and convergence tolerances

Grid type Tolerance/mean number of iterations Mean volume error (%) Relative mean CPU time

Square ðIp ¼ 4; 2DÞ 10�4=4:12 1:47� 10�2 1.46
10�6=4:48 7:13� 10�5 1.49

10�10=4:86 3:20� 10�9 1.58

Hexagonal ðIp ¼ 6; 2DÞ 10�4=4:49 1:14� 10�2 1.66
10�6=5:06 7:34� 10�5 1.74

10�10=5:87 4:32� 10�9 1.84

Cubic ðIp ¼ 8Þ 10�4=4:74 3:84� 10�3 1.90
10�6=5:35 2:71� 10�5 1.99

10�10=6:10 1:62� 10�9 2.11

Icosahedral ðIp ¼ 12Þ 10�4=4:51 2:91� 10�3 2.42
10�6=5:29 2:00� 10�5 2.53

10�10=6:21 1:48� 10�9 2.70

Dodecahedral ðIp ¼ 20Þ 10�4=4:22 2:96� 10�3 3.23
10�6=4:96 2:06� 10�5 3.32

10�10=5:91 1:29� 10�9 3.44



Table 2
CPU time (relative to that required by the proposed analytical method) using Brent’s method with two different bracketing procedures, for
square, cubic and dodecahedral grids, and a convergence tolerance of 10�10

Grid type Bracketing procedure

Rider and Kothe [13] This work

Relative CPU time

Square ðIp ¼ 4Þ 1.58 1.38
Cubic ðIp ¼ 8Þ 2.11 1.44
Dodecahedral ðIp ¼ 20Þ 3.44 1.39

Fig. 3.
paralle
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E ¼
X
i;j;k

V ði;j;kÞX jF ði;j;kÞ � F ði;j;kÞe j; ð11Þ
where V ði;j;kÞX is the volume of cell ði; j; kÞ, and F ði;j;kÞ and F ði;j;kÞe are, respectively, the calculated and exact vol-
ume fractions at the end of the test.

4.1.1. Zalesak’s sphere test

This test involves the rotation, in a uniform vorticity field, of a slotted sphere of fluid of radius 0.15, initially
centered at ð0:5; 0:75; 0:5Þ, around an axis parallel to the z axis and centered in a unit domain. The slot is 0.05
wide and 0.125 deep. Results after one complete revolution of the slotted sphere obtained with a cubic grid, a
parallelepiped grid with n ¼ 7:5 and a sinusoidal grid with n ¼ 20 are presented in Fig. 3 for the same grid size
(1003 cells) and time step used by Enright et al. [3]. The E values are included at the top of each picture. The
minimum value of the ratios obtained between the minimum and maximum edge lengths for all the cells (rg) is
used to measure the deformation degree of the grid. The values of rg corresponding to the deformed grids used
are 0.99 for the parallelepiped grid and 0.56 for the sinusoidal grid. It can be observed that the proposed ana-
lytical and geometrical tools, in combination with the advection and reconstruction methods proposed in [4,8],
respectively, perform well even for very deformed grids (the L1 error norm for the greatest grid deformation
only increases by about 5% with respect to that of the cubic grid). Note that there are no appreciable differ-
ences between the iso-surface results presented in Fig. 3 for different grid types. It has been found that using
Brent’s method for local volume conservation enforcement with a sufficiently low convergence tolerance yields
E values that are almost identical to those obtained with the proposed analytical method, although, as in the
tests depicted in Table 1, at the cost of a higher computational time. A visual comparison with the correspond-
ing results obtained by Enright et al. [3] shows that the results presented in Fig. 3 compare favorably with their
standard level set results. The net change in total volume at the end of the test obtained by the method pro-
posed here is about 1� 10�7% for the cubic and parallelepiped grids and 1� 10�4% for the sinusoidal grid.
a b c
Results for the F ¼ 0:5 iso-surfaces after one complete revolution of the slotted sphere for three grid types: (a) cubic grid; (b)

lepiped grid with n ¼ 7:5; (c) sinusoidal grid with n ¼ 20. The L1 error norm is indicated at the top of each picture.



Fig. 4. Results for the F ¼ 0:5 iso-surfaces at instants t ¼ T=2 and T for the 3D shearing flow test, a grid size of 128� 128� 256 and two
grid types: (a) cubic grid; (b) sinusoidal grid with n ¼ 20. The top and bottom pictures corresponding to t ¼ T=2 show, respectively, xy-
plane and xz-plane views.

Table 3
L1 error norm, E, and order of convergence, O, obtained in the 3D shearing flow test at t ¼ T , using different grid types (the grid
deformation rates rg are in parentheses) and three grid sizes

Grid size Grid type

Cubic
(rg ¼ 1:0)

Parallelepiped with n ¼ 7:5
(rg ¼ 0:99)

Sinusoidal with
n ¼ 30 (rg ¼ 0:67)

Sinusoidal with
n ¼ 20 (rg ¼ 0:56)

32� 32� 64 E 1:06� 10�2 1:04� 10�2 1:11� 10�2 1:18� 10�2

O 1.59 1.55 1.57 1.59
64� 64� 128 E 3:53� 10�3 3:54� 10�3 3:74� 10�3 3:92� 10�3

O 1.82 1.82 1.81 1.81
128� 128� 256 E 1:00� 10�3 1:00� 10�3 1:07� 10�3 1:12� 10�3

J. López, J. Hernández / Journal of Computational Physics 227 (2008) 5939–5948 5947
4.1.2. 3D shearing flow test

In this test, taken from the work of Liovic et al. [5], a sphere of fluid of radius 0.15, initially centered at
ð0:5; 0:75; 0:25Þ in a domain of size 1� 1� 2, is deformed using a combination of the classical single vortex
test of Rider and Kothe [13] with a laminar pipe flow in the z direction. A period of T ¼ 6 (the fluid body
should reverse to the initial location at t ¼ T ) and a CFL number based on the maximum velocity component
in a cubic grid equal to 0.5 were used. Table 3 shows the L1 error norm obtained at t ¼ T using different grid
types and three grid sizes. Note that, for sufficiently fine grids, nearly second-order accuracy is reached for all
the cases shown in the table. Again, the differences in accuracy between the results obtained with different grids
are relatively small. It can be observed from the iso-surfaces of Fig. 4 that there are no appreciable differences
between the results obtained with a cubic grid and those obtained with a highly deformed grid. The net change
in total volume at the end of the test obtained with the grid with the highest deformation and a
128� 128� 256 size is about 1� 10�5%.

5. Conclusions

Simple and efficient geometrical tools for volume truncation operations and an analytical method for local
volume enforcement in three-dimensional Cartesian geometry have been proposed for general grids. Different
test cases have demonstrated the efficiency of the proposed analytical method, which compares favorably with
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Brent’s iterative method. The proposed tools may help reduce the implementation difficulties associated with
the highly complex geometrical operations involved in 3D PLIC–VOF methods based on unsplit advection
schemes. Different tests demonstrated that the proposed tools, in combination with a recently proposed unsplit
PLIC–VOF method, perform well in terms of accuracy, even for very deformed grids.
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